An approach for aggregating upstream catchment information to support research and management of fluvial systems across large landscapes

Author(s):

Yin-Phan Tsang, Daniel Wieferich, Kuolin Fung, Dana M Infante and Arthur R Cooper

Journal or Book Title: Springer Plus

Volume/Issue: 3:589

Year Published: 2014

Abstract:

The growing quality and availability of spatial map layers (e.g., climate, geology, and land use) allow stream studies, which historically have occurred over small areas like a single watershed or stream reach, to increasingly explore questions from a landscape perspective. This large-scale perspective for fluvial studies depends on the ability to characterize influences on streams resulting from throughout entire upstream networks or catchments. While acquiring upstream information for a single reach is relatively straight-forward, this process becomes demanding when attempting to obtain summaries for all streams throughout a stream network and across large basins. Additionally, the complex nature of stream networks, including braided streams, adds to the challenge of accurately generating upstream summaries. This paper outlines an approach to solve these challenges by building a database and applying an algorithm to gather upstream landscape information for digitized stream networks. This approach avoids the need to directly use spatial data files in computation, and efficiently and accurately acquires various types of upstream summaries of landscape information across large regions using tabular processing. In particular, this approach is not limited to the use of any specific database software or programming language, and its flexibility allows it to be adapted to any digitized stream network as long as it meets a few minimum requirements. This efficient approach facilitates the growing demand of acquiring upstream summaries at large geographic scales and helps to support the use of landscape information in assisting management and decision-making across large regions.

DOI: 10.1186/2193-1801-3-589

Type of Publication: Journal Article

shadow